Niveau d'étude
Bac +4
ECTS
9 crédits
Crédits ECTS Echange
9.0
Composante
UFR IM2AG (informatique, mathématiques et mathématiques appliquées)
Période de l'année
Automne (sept. à dec./janv.)
Description
I. Compléments sur les anneaux
- Groupe des éléments inversibles. (ℤ/nℤ)∗, fonction d’Euler. Éléments irréductibles et éléments premiers. Pgcd et ppcm.
- Notion d’algèbre. Algèbre des polynômes en n indéterminées. Polynômes symétriques. Liens entre coefficients et racines d’un polynôme. En TD : séries formelles en une variable. Corps des fractions d’un anneau intègre.
- Anneaux noethériens, théorème de la base de Hilbert.
- Anneaux factoriels. Lemme de Gauss et lemme d'Euclide. Exemple : les anneaux principaux. Théorème de Gauss sur A[X], pour A factoriel. Polynômes irréductibles, critères d’irréductibilité sur A factoriel (Eisenstein, etc.).
II. Corps (les corps considérés sont commutatifs)
- Extensions de corps, degrés, multiplicité. Éléments algébriques, éléments transcendants, polynôme minimal, extension algébrique.
- Corps de rupture, corps de décomposition d’un polynôme.
- Clôture algébrique (définition), le corps ℂ des nombres complexes est algébriquement clos. Énoncé du théorème de Steinitz.
- Corps finis, existence et unicité, structure multiplicative. Racines de l’unité, polynômes cyclotomiques, irréductibilité sur ℤ.
III. Représentations des groupes finis sur ℂ
- Représentations d’un groupe fini. Représentations par permutations, représentations régulières.
- Représentations irréductibles, Théorème de Maschke.
- Morphismes de représentations. Lemme de Schur.
- Caractères. Caractère de Hom(V;W). Orthogonalité et décomposition des représentations. Formule de Burnside. Théorème fondamental de Frobenius et corollaires. Table des caractères. Orthogonalité des colonnes.
- Exemple : table de 𝔖4. Noyau d’un caractère. Application : critère de simplicité.
- Le cas des groupes abéliens. Groupe dual d’un groupe abélien fini. Transformée de Fourier discrète, cas de ℤ/nℤ et (ℤ/nℤ)2. Structure des groupes abéliens finis.
Heures d'enseignement
- CMCM33h
- TDTD48h
Pré-requis recommandés
Cours d’algèbre de L3.
Période
Semestre 7