• Votre sélection est vide.

    Enregistrez les diplômes, parcours ou enseignements de votre choix.

UE Statistique computationnelle

  • Niveau d'étude

    Bac +5

  • ECTS

    3 crédits

  • Crédits ECTS Echange

    3.0

  • Composante

    UFR IM2AG (informatique, mathématiques et mathématiques appliquées)

  • Période de l'année

    Automne (sept. à dec./janv.)

Description

Cours divisé en deux parties : méthodes d’échantillonnage / simulation et statistique bayésienne.

Le volet « échantillonnage » consistera à étudier différentes méthodes d’inférence statistique s’appuyant sur des techniques de simulation ou de ré-échantillonnage. Après avoir évoqué quelques techniques classiques de simulation de variables aléatoires, nous illustrerons comment les méthodes simulation peuvent permettre de répondre à des problématiques d’intégration. Nous étudierons ensuite des méthodes d’inférence statistique à proprement parler telles que le bootstrap et les tests statistiques par permutation. Les séances pratiques seront réalisées en R.

Le volet « statistique bayesienne » consistera à présenter le paradigme de l’inférence bayésienne, l’introduction de lois a priori et le calcul de lois a posteriori. L’inférence sera détaillée dans des modèles simples (gaussiens, bernoulli). Lorsque le calcul n’est pas explicite, des algorithmes de Monte Carlo par Chaine de Markov (MCMC) seront introduits (Metropolis Hastings, Gibbs). Les séances pratiques seront réalisées en R.

Lire plus

Heures d'enseignement

  • CMCM12h
  • TPTP12h

Pré-requis recommandés

Cours de M1 de rappels de probabilité et de logiciels spécialisés (introduction à R).

Lire plus

Période

Semestre 9

Compétences visées

Savoir mettre en oeuvre des méthodes de Monte Carlo paramétriques et non-paramétriques pour répondre à des questions d’inférence statistique en utilisant le langage R.

Savoir mettre en oeuvre une inférence bayesienne dans des modèles simples. Savoir proposer et mettre en oeuvre un algorithme MCMC sur un problème plus complexe en utilisant le langage R.

Lire plus

Bibliographie

  • Rizzo, M. L. (2019). Statistical computing with R. CRC Press.
  • Robert, C (2006), Le choix bayésien. Collection Statistique et probabilités appliquées Springer
  • Marin, J.-M. et Robert, C. (2014), Bayesian essentials with R, Springer.
Lire plus