Diplômes intégrant cet élément pédagogique :
Descriptif
The course is split into two parts. During the first part, a wide range of machine learning algorithms will be discussed. The second part will focus on deep learning, and presentations more applied to the three data modalities and their combinations. The following is a non-exhaustive list of topics discussed:
- Computing dot products in high dimension & Page Rank
- Matrix completion/factorization (Stochastic Gradient Descent, SVD)
- Monte-carlo, MCMC methods: Metropolis-Hastings and Gibbs Sampling
- Unsupervised classification: Partitionning, Hierarchical, Kernel and Spectral clustering
- Alignment and matching algorithms (local/global, pairwise/multiple), dynamic programming, Hungarian algorithm,…
- Introduction to Deep Learning concepts, including CNN, RNN, Metric learning
- Attention models: Self-attention, Transformers
- Auditory data: Representation, sound source localisation and separation.
- Natural language data: Representation, Seq2Seq, Word2Vec, Machine Translation, Pre-training strategies, Benchmarks and evaluation
- Visual data: image and video representation, recap of traditional features, state-of-the-art neural architectures for feature extraction
- Object detection and recognition, action recognition.
- Multimodal learning: audio-visual data representation, multimedia retrieval.
- Generative Adversarial Networks: Image-image translation, conditional generation
Informations complémentaires
Langue(s) : AnglaisEn bref
Période : Semestre 9Crédits : 6
Volume horaire
- CM : 36h
Contact(s)
Responsable pédagogique
Eric Gaussier
Xavier Alameda-Pineda
Etudiants internationaux
Ouvert aux étudiants en échange dans la limite des capacités d'accueil
Crédits : 6.0
Crédits : 6.0