• Votre sélection est vide.

    Enregistrez les diplômes, parcours ou enseignements de votre choix.

UE Introduction to Artificial Intelligence

  • Niveau d'étude

    Bac +4

  • ECTS

    3 crédits

  • Composante

    UFR IM2AG (informatique, mathématiques et mathématiques appliquées)

  • Période de l'année

    Automne (sept. à dec./janv.)

Description

This course aims to introduce to students the basics of and a large overview on Artifical Intelligence, including Machine Learning, Deep Learning and Symbolic AI. 

Lire plus

Objectifs

Providing a solid background in AI, understanding the principles in AI, developping the skills to model, implement and deploy simple AI models in different contexts, analysing the advantage and the limits of AI 

Lire plus

Heures d'enseignement

  • CMCM19,5h
  • TPTP13,5h

Pré-requis recommandés

Very basic notions in Linear Algebra (Matrices), Analysis and Probability, basic programming in Python 

Lire plus

Syllabus

The course contains three parts. 1. Machine Learning: Basics, Supervised ML, Unsupervised ML, Regularization, Evaluation of ML. 2. Deep Learning: Dense neural networks, Convolution Neural Networks, Recurrent Neural Networks, Gradient Descent, Backpropagation, Large Language Model (it time permits). 3. Symbolic AI: Logic-based Knowledge, Rule-based Reasoning.

Lire plus

Compétences visées

Understanding the notions and principles, manipulating simple analysis, implementing AI models

Lire plus

Bibliographie

An introduction to Statistical Learning, very good book with online version: https://www.statlearning.com/

Lire plus