• Votre sélection est vide.

    Enregistrez les diplômes, parcours ou enseignements de votre choix.

UE Scientific programming in Python

  • ECTS

    3 crédits

  • Crédits ECTS Echange

    3.0

  • Composante

    UFR PhITEM (physique, ingénierie, terre, environnement, mécanique)

  • Période de l'année

    Automne (sept. à dec./janv.)

Description

Using a scientific programming language (e.g., Python) as a tool for modelling and numerical analysis.

Lire plus

Objectifs

 Outline:

  1. Number representation systems and their precision
  2. Data in Python
    1. Basic data structures: scalars, strings, lists, dictionaries, sets, tuples
    2. Matrix representations of numbers: the numpy ndarray (vs matrix),pandas data tables
    3. Read and write data according to the data type (CSV, JSON, pickle,. . . )
  3. Array operations:
    1. Unitary operators MX0 –> MX1
    2. N-ary operators (MX0, . . . , MXn-1) –> MXn
  4. Solving equations
    1. Linear matrix equations with applications to interpolation and regression
    2. Differential equations with applications to interpolation and prediction
  5. Probability and statistics in Python
    1. Probability laws: distribution families, random variables, realisations
    2. Statistical tests
Lire plus

Heures d'enseignement

  • UE Scientific programming and machine learning in Python - CM/TDCours magistral - Travaux dirigés14h
  • UE Scientific programming and machine learning in Python - TPTP16h

Pré-requis recommandés

Mathematical background on probability and statistics, linear algebra and differential equations

Lire plus

Syllabus

  1. https://www.scipy.org/
  2. Bashier, E.B.M. (2020). Practical Numerical and Scientific Computing with MATLAB and Python (1st ed.). CRC Press.
  3. H. P. Langtangen, A Primer on Scientific Programming with Python. Springer Berlin Heidelberg, 2016
Lire plus

Période

Semestre 7