ECTS
6 crédits
Composante
UFR Chimie-Biologie
Période de l'année
Toute l'année
Description
Course outline
At the end of the course, the students should be able to analyze a "omic" dataset. More precisely, they should be able.
1- to load, explore and summarize graphically a dataset.
2- to compute confidence interval estimates for proportions, means and variances.
3- to formulate hypotheses, compute tests statistics, interpret p-values and make practical decisions for the standard parametric and non-parametric tests.
4- to adjust simple and multiple linear models, analyses of variance (anovas), logistic regression, Cox model.
5- to select genes that explain a response variable by applying multiple testing approaches.
6- to analyze a data set of differential gene expression.
Heures d'enseignement
- UE Biostatistics, Bioinformatics, Modeling , Part II - TDTD12h
- UE Biostatistics, Bioinformatics, Modeling , Part II - CMCM27h
Période
Semestre 9
Compétences visées
Overview of the principal techniques of statistical data treatment, with an emphasis on practical skills and the use of the statistical software R.