• Votre sélection est vide.

    Enregistrez les diplômes, parcours ou enseignements de votre choix.

UE Introduction to Machine Learning and Deep Learning

  • Niveau d'étude

    Bac +5

  • ECTS

    3 crédits

  • Composante

    UFR PhITEM (physique, ingénierie, terre, environnement, mécanique)

  • Période de l'année

    Automne (sept. à dec./janv.)

Description

Introduction to the statistical learning theory and prediction (regression/classification)

  • Review of Models/Algorithms for supervised/unsupervised learning
  • Illustration de ces algorithmes sur différents jeux de données on different dataset
    (intelligence artificielle, Bioinformatics, vision, etc ...)

Content:

  • General introduction to the statistical learning theory and prediction (regression/classification)
  • Generative approaches: Gaussian discriminant analysis, naïve Bayes hypothesis
  • Discriminative approaches: logistic regression
  • Prototype approaches: support vector machines (SVM)
  • Unsupervised classification (kmeans and mixture model)
  • Dictionnary learning / Sparse reconstruction
  • Source separation

This course is given at Phelma-INP.

Lire plus

Heures d'enseignement

  • UE Introduction to Machine Learning and Deep Learning - CMTDCours magistral - Travaux dirigés12h

Pré-requis recommandés

Basic elements of probability/statistics, filtering

Lire plus

Période

Semestre 9

Bibliographie

  • Trevor Hastie, Robert Tibshirani et Jerome Friedman (2009), "The Elements of Statistical Learning," (2nd Edition) Springer Series in Statistics
  • Christopher M. Bishop (2006), "Pattern Recognition and Machine Learning," Springer
  • Richard O. Duda, Peter E. Hart et David G. Stork (2001), "Pattern classification," (2nd edition) Wiley
Lire plus