Diplômes intégrant cet élément pédagogique :
Descriptif
This program combines case studies coming from real life problems or models and lectures providing the mathematical and numerical backgrounds.
Contents:
- Introduction, classification, examples.
- Theoretical results: convexity and compacity, optimality conditions, KT theorem
- Algorithmic for unconstrained optimisation (descent, line search, (quasi) Newton)
- Algorithms for non differentiable problems
- Algorithms for constrained optimisation: penalisatio, SQP methods
- Applications
Pré-requis recommandés
Basic algebra (linear spaces, matrix computation) Basic calculus (Norm, Banach spaces, Hilbert spaces, basic differential calculus) The students should be able to compute the gradient and the Hessian of real functions on IR^n and also differentials of simple functions such as quadratic forms.
Compétences visées
Recognise and classify optimisation problems
Solve optimisation problems using adequate algorithms and methods
Practical implementation
Modalités de contrôle des connaissances
Session 1 ou session unique - Contrôle des connaissances
Nature | Type | Nature d'évaluation | Durée (min) | Coeff. |
---|---|---|---|---|
UE | 100/100 | |||
UE | Ecrit - devoir surveillé | 120 | 100/100 |
Session 2 - Contrôle des connaissances
Nature | Type | Nature d'évaluation | Durée (min) | Coeff. |
---|---|---|---|---|
UE | Report de notes | 100/100 | ||
UE | Ecrit ou Oral | 120 | 100/100 |
Informations complémentaires
Lieu(x) : GrenobleLangue(s) : Anglais
En bref
Période : Semestre 8Crédits : 6
Volume horaire
- Cours magistral - Travaux dirigés : 33h
- TP : 16.5h
Contact(s)
Hadrien Hendrikx
Etudiants internationaux
Crédits : 6.0