Niveau d'étude
Bac +5
ECTS
6 crédits
Crédits ECTS Echange
6.0
Composante
UFR IM2AG (informatique, mathématiques et mathématiques appliquées)
Période de l'année
Automne (sept. à dec./janv.)
Description
This course contains two parts.
Part I concerns Data challenge.
This part consists in a real problem that is given to the students for which data are readily available. The goal is to have teams of five to six students compete in solving (at least partially) the problem.
The work is spread over the Autumn semester and consists of: building a prediction model or a methodology to solve the problem based on a set of training data, blind evaluation of the model or methodology on a test bench (unseen data, withheld from the students), using an appropriate performance measure.
At the end, the teams will present their solution path in a formal presentation and a short report.
Part II concerns Data Science seminars.
This is a cycle of seminars or presentations with a common factor that is the project of the data challenge. A first seminar will settle the context and the problem for that year’s data challenge.
The other seminars will propose different industrial or academic approaches and problems that are (loosely) related to the objective of the data challenge. Presentations have a time slot of one hour and students will have to read up front some ressources to orient their questions about the subject after the seminar.
Heures d'enseignement
- TDTD36h
Pré-requis recommandés
basic concepts on applied mathematics, probability, statistics
Période
Semestre 9
Compétences visées
At the end of the course, the student will be able to efficiently read and summarize seminar presentations and articles. He.she will acquire new skills and academic knowledge in data science.