UE Scientific programming in Python

Degrees incorporating this pedagocial element :

Description

Using a scientific programming language (e.g., Python) as a tool for modelling and numerical analysis.

 Outline:

  1. Number representation systems and their precision
  2. Data in Python
    1. Basic data structures: scalars, strings, lists, dictionaries, sets, tuples
    2. Matrix representations of numbers: the numpy ndarray (vs matrix),pandas data tables
    3. Read and write data according to the data type (CSV, JSON, pickle,. . . )
  3. Array operations:
    1. Unitary operators MX0 –> MX1
    2. N-ary operators (MX0, . . . , MXn-1) –> MXn
  4. Solving equations
    1. Linear matrix equations with applications to interpolation and regression
    2. Differential equations with applications to interpolation and prediction
  5. Probability and statistics in Python
    1. Probability laws: distribution families, random variables, realisations
    2. Statistical tests

Recommended prerequisite

Mathematical background on probability and statistics, linear algebra and differential equations