Degrees incorporating this pedagocial element :
Description
The course will present practical and theoretical aspects of the classical approaches used to determine the structure of macromolecules by X-ray crystallography and Nuclear Magnetic Resonance spectroscopy. The program of this course is described below:
Part I - Crystallography - 20h
- Crystallization techniques
- Crystal symmetry and space groups
- Diffraction
- Structure factors, reciprocal space etc
- Tutorial: Data treatment
- Phasing – MIR, SAD, MAD
- Molecular replacement, crystallographic symmetry
- Tutorial: MAD Phasing
- Tutorial: Molecular replacement
- Refinement
- Tutorial: Model building and refinement
- Practical lab: Crystallization on a PSB platform
- Practical lab: X-ray data collection on a ESRF beamline
Part II – Nuclear Magnetic Resonance-20h
- NMR principles: active nuclei, magnetic field, radiofrequency excitation,
return to equilibrium - NMR observables in the spectra of biomolecules (chem. shift, scalar
couplings, linewidth) - NMR observables: measurement
- Practical lab on IBS-NMR platform: data collection
- The steps to structure determination: sample preparation, isotopic labeling
- The steps to structure determination: assignment
- The steps to structure determination: extraction of structural parameters
- Tutorial: Data analysis
- Structure calculation: principles
- Practical lab: Protein structure calculation
Targeted skills
Decision making in structure determination of biomolecules, expertise in experimental structure determination by X-ray crystallography and liquid-state NMR spectroscopy, critical analysis of structural models at atomic resolution.
In brief
Period : Semester 9Credits : 6
Number of hours
- Lectures (CM) : 19h
- Tutorials (TD) : 12h
- Practical work (TP) : 10h
Location(s) : Grenoble
Language(s) : English
Contact(s)
Catherine Bougault