

SCIENCES, TECHNOLOGIES, SANTÉ, INGÉNIERIE

Parcours Mécanique 3e année

Licence Mécanique

Composante UFR PhITEM (physique, ingénierie, terre, environnement, mécanique) Langue(s) d'enseignement Français

Présentation

Ce parcours offre une formation scientifique dont les contenus sont équilibrés entre la mécanique du solide et la mécanique des fluides. L'objectif est de donner une formation théorique solide aux étudiants, sans négliger l'approche numérique de la modélisation des problèmes mécaniques, et en donnant des notions de mises en œuvre expérimentale.

La pédagogique appliquée dans les enseignements est professionnalisant (étude de cas concrets, apprentissage d'outils de convergence des métiers (CAO, python, etc.)) mais prépare essentiellement à une poursuite d'étude en master.

La formation se termine par une mise en situation professionnelle de 8 semaines minimum qui permet aux étudiants de confronter leurs connaissances à l'analyse des problèmes industriels ou de laboratoires de recherche.

L'objectif est de donner une formation théorique solide aux étudiants, sans négliger la pratique et l'approche numérique des problèmes mécaniques.

Référentiel ROME : Conception et dessin produits mécaniques, Design industriel, Management et ingénierie études, recherche et développement industriel

Compétences

- Identifier les principes fondamentaux de la mécanique pour expliquer qualitativement les phénomènes mis en jeu dans un système mécanique fluide ou solide (champs de force, de déplacement, de vitesse, de déformation, lois de comportement, ...).
- Analyser un système mécanique, un processus ou un type de fabrication : 1) en utilisant des outils mathématiques adaptés ; 2) en appliquant les principes de la mécanique ;
 3) en décomposant un problème mécanique complexe en problèmes élémentaire
- Modéliser et résoudre un problème mécanique (solide ou fluide) en utilisant des outils mathématiques
- Confronter les résultats d'un modèle mécanique (théorique ou expérimental) aux prévisions et apprécier ses limites de validité
- Présenter par oral et par écrit des analyses, des modèles et des interprétations de systèmes mécaniques

Formation internationale : Formation tournée vers l'international

Dimension internationale

Étudier à l'international en échange

Dans le cadre de cette formation, vous avez la possibilité de partir étudier durant un semestre ou une année dans un établissement partenaire de l'UGA à l'international.

Le correspondant relations internationales de votre composante pourra vous renseigner.

Plus d'informations sur : L' https://international.univgrenoble-alpes.fr/partir-a-l-international/partir-etudier-a-letranger-dans-le-cadre-d-un-programme-d-echanges [2] /

Organisation

Stage à l'étranger : En France ou à l'étranger

Admission

Conditions d'admission

En 3e année après un IUT, un BTS, une classe préparatoire ayant une formation compatible avec la licence mécanique

Public formation continue : Vous relevez de la formation continue:

- si vous reprenez vos études après 2 ans d'interruption
- ou si vous suiviez une formation sous le régime formation continue l'une des 2 années précédentes
- ou si vous êtes salarié, demandeur d'emploi, travailleur indépendant

Si vous n'avez pas le diplôme requis pour intégrer la formation, vous pouvez entreprendre une démarche de [2] validation des acquis personnels et professionnels (VAPP)

Pour plus d'informations, consultez la page web de la [2] Direction de la formation continue et de l'apprentissage

Vous pouvez également C Consulter les tarifs s'appliquant aux publics de la formation continue.

Candidature

Vous souhaitez candidater et vous inscrire à cette formation?

Laissez-vous guider simplement en suivant ce [2] lien

Public cible

Étudiants avec formation scientifique motivés par l'ingénierie Mécanique

Droits de scolarité

Consulter le montant des frais d'inscription

Pré-requis obligatoires

des candidats en licence Mécanique de :

année • Entrée en 3e : formation (mathématiques et mécanique) de niveau bac + 2 La réussite en première année de licence scientifique nécessite la maîtrise de connaissances et compétences acquises au lycée, une bonne connaissance des débouchés de chaque filière universitaire ainsi qu'un engagement du futur étudiant dans son projet d'étude choisi. Il est attendu

- Disposer de compétences scientifiques : cette mention implique, en effet, d'avoir une capacité à analyser, poser une problématique et à mener un raisonnement, une capacité d'abstraction, de logique et de modélisation et la maîtrise d'un socle de connaissances disciplinaires et des méthodes expérimentales associées
- Disposer de compétences en communication : cette mention nécessite en effet une capacité à communiquer à l'écrit et à l'oral de manière rigoureuse et adaptée, une aptitude à se documenter dans au moins une langue étrangère, prioritairement anglaise et une capacité à l'écrire et à la parler à un niveau B
- Disposer de compétences méthodologiques comportementales : cette mention requiert une curiosité intellectuelle, une capacité à s'organiser et à conduire ses

apprentissages et, enfin, une aptitude à programmer son travail personnel et à s'y tenir dans la durée.

Dans ces grands domaines et pour toutes les mentions de licence scientifique, le lycéen doit attester a minima une maîtrise correcte des principales compétences scientifiques cibles de la classe de terminale. En outre :

- Chaque mention de licence scientifique se caractérise par une discipline majeure (le nom de la mention), pour laquelle il est préconisé une très bonne maîtrise des matières correspondantes au lycée, et une bonne maîtrise des compétences expérimentales éventuellement associées
- Chaque mention inclut souvent une seconde discipline pour laquelle il est préconisé une bonne maîtrise des matières correspondantes au lycée

Une très bonne maîtrise des compétences attendues en mathématiques à la fin de la classe de terminale est préconisée. Une bonne maîtrise de compétences attendues dans une autre discipline, scientifique ou non, à la fin de la classe de terminale est préconisée.

Et après

Poursuite d'études

- A l'UGA: mention Mécanique parcours Génie mécanique, parcours Simulation et instrumentation en mécanique, parcours Environmental fluid mechanic (EFM), parcours Fluid mechanics and energetics (INP), Métiers de l'enseignement et de l'éducation et de la formation (MEEF) 2nd degré: professeur de collège (technologie), de lycée (génie mécanique, sciences industrielles de l'ingénieur), de lycée professionnel (génie mécanique)
- Masters de Mécanique dans d'autres universités
- Écoles d'ingénieurs

Poursuite d'études à l'étranger

Master Mechanical engineering

Insertion professionnelle statistiques

Retrouvez toutes les informations concernant 🗹 le taux de réussite au diplôme et le devenir de nos diplômés.

Il est également possible de consulter nos documentsressources Des études à l'emploi classes par domaines de formation.

Secteur(s) d'activité(s)

- · Construction automobile et aéronautique
- · Bâtiment et travaux publics
- Énergie
- · Nouvelles technologies
- Météorologie
- Espace
- Transport
- Santé

Métiers visés

- Technicien en bureau d'étude, technicien méthode
- Technico commercial
- Projeteur

Infos pratiques

Contacts

Responsable pédagogique

Laurent Baillet

■ laurent.baillet@univ-grenoble-alpes.fr

Secrétariat de scolarité

Demande de candidature pour la L3

■ phitem-candidature-etudiant@univ-grenoble-alpes.fr

Secrétariat de scolarité

Gestionnaire L3 mention Mécanique

■ phitem-licence-mecanique@univ-grenoble-alpes.fr

Responsable formation continue

Laura DI RUZZA

Lieu(x) ville

Grenoble

Campus

Remoble - Domaine universitaire

Programme

Licence Physique mécanique 2e année

Semestre 3

	Nature	CM	TD	TP	Crédits
UE Calcul matriciel et fonctions de plusieurs variables -MAT304-	UE	24h	34,5h		6 crédits
UE Courbes, paramétrées et équations différentielles -MAT307-	UE	19,5h	30h	6h	6 crédits
UE Mécanique des solides PM/PSTEM - MEC301 -	UE	18h	30h	12h	6 crédits
UE Electromagnétisme - PHY305 -	UE	22,5h	30h	7,5h	6 crédits
UE Thermodynamique - PHY302 -	UE	15h	15h	3,5h	3 crédits
UE ETC - PEP	UE		30h		3 crédits

Semestre 4

	Nature	СМ	TD	TP	Crédits
UE Formes quadratiques, analyse de fourrier -MAT404-	UE	21h	34,5h		6 crédits
UE Mécanique des fluides - MEC402 -	UE	9h	15h	6h	3 crédits
UE Vibrations ondes et optique ondulatoire - PHY401 -	UE	19,5h	33h		6 crédits
UE Thèmes expérimentaux	UE			28h	3 crédits
UE Anglais	UE		30h		3 crédits
UE Découverte du génie civil	UE	19,5h	24h	16h	6 crédits
UE Découverte du génie mécanique - GMP201 -	UE	12h	18h	30h	6 crédits
UE Introduction aux probabilités - MAT403 -	UE	21h	34,5h		6 crédits
UE Mathématiques assistées par ordinateur - MAT406 -	UE	18h	18h	24h	6 crédits
UE Instrumentation physique -PHY404 -	UE	7,5h	7,5h	35h	6 crédits
UE Gravimétrie, géodesie et géothermie - STE401 -	UE	18h	24h	10h	6 crédits
UE Introduction aux phénomènes aéronautiques - MEC403 -	UE	9h	18h	4h	3 crédits
UE Relativité - PHY403 -	UE	12h	12h		3 crédits

Licence 3e année

Semestre 5

UE Mk Fluides incompressibles 2

UE Mise en situation professionnelle

UE Anglais - Licence Semestre 6

tuyère supersonique

UE Aerodynamique compressible: Dimensionnement du fonctionnement d'une

	Nature	СМ	TD	TP	Crédits
UE Mécanique des milieux continus	UE	24,5h	25,5h		6 crédits
UE Théorie des poutres	UE	6h	13,5h	6h	3 crédits
UE Communication et representations de systèmes mécaniques	UE	4h		20h	3 crédits
UE Analyse Numérique	UE	9h	13,5h	3h	3 crédits
UE Méthodes énergétiques en mécanique	UE	13,5h	12h		3 crédits
UE Mathématiques appliquées pour l'ingénieur	UE	12h	13,5h		3 crédits
UE Introduction aux circuits hydrauliques et aux pompes	UE	4,5h	6h	10h	3 crédits
UE Mk Fluides incompressibles 1	UE	12h	13,5h		3 crédits
UE Acoustique linéaire	UE	9h	9h	7,5h	3 crédits
Compatra C					
Semestre 6					
	Nature	CM	TD	TP	Crédits
UE Analyse de données	UE	9h	6h	10,5h	3 crédits
UE Introduction aux Eléments Finis	UE	12h	18h	20h	6 crédits
UE Mécanique des Vibrations	UE	15h	10,5h	1,5h	3 crédits
UE Comportement non élastiques écoulement des matériaux solides et granulaires	UE	12h	12h		3 crédits
UE Introduction aux Eléments Finis	UE	12h	18h	20h	6 crédits

UE

UE

UE

UE

7,5h

12h

9h

7,5h

9h

6h

50h

24h

3 crédits

3 crédits

6 crédits

3 crédits

