
UE Advanced parallel system


Level
Baccalaureate 
+5

 ECTS
6 credits  Component

UFR IM2AG 
(informatique, 
mathématiques 
et 
mathématiques 
appliquées)


Semester
Automne

In brief

 Teaching language(s): English

 Open to exchange students: Yes

 Code d'export Apogée: GBX9MO59

Presentation

Description

Today, parallel computing is omnipresent across a large spectrum of computing platforms, from processor cores or GPUs up to 

Supercomputers and Cloud platforms. The largest Supercomputers gather millions of processing units and are heading towards 

Exascale (a quintillion or 10^18 flops -  http://top500.org). If parallel processing was initially targeting scientific computing, it is 

now part of many domains like Big Data analytics and Deep Learning. But making an efficient use of these parallel resources 

requires a deep understanding of architectures, systems, parallel programming models, and parallel algorithms.

Overview:

The class is organized around weekly lectures, discussions and help time. The presented materials that will be available each 

week on the class web page. To get practical experience and good understanding of the main concepts the students are expected 

to develop short programs and experiments. Students will also have to prepare a presentation or a written report on research 

articles. Students will have access to Grid'5000 parallel machines and the SimGrid simulator for experiments.

This class is organized around 2 main blocks:

Overview of parallel systems:

1. • Introduction to parallelism from GPU to supercomputers.

1 / 3 Non-contractual information.
Last update on 27 September 2023

http://top500.org


• Hardware and system considerations for parallel processing (multi-core architectures, process and thread handling, cache 

efficiency, remote data access, atomic instructions)

• Parallel programming: message passing, one-sided communications, task-based programming, work stealing based runtimes 

(MPI, Cilk, TBB, OpenMP).

• Modeling of parallel programs and platforms. Locality, granularity, memory space, communications.

• Parallel algorithms, collective communications, topology aware algorithms.

• Scheduling: list algorithms; partitioning techniques. Application to resource management (PBS, LSF, SGE, OAR).

• Large scale scientific computing: parallelization of Lagrangian and Eulerian solvers, parallel data analytics and scientific 

visualization.

• AI and HPC: how parallelism is used at different levels to accelerate machine learning and deep learning using 

supercomputers.

Functional parallel programming:

We propose to study a clean and modern approach to the design of parallel algorithms: functional programming. Functional 

languages are known to provide a different and cleaner programming experience by allowing a shift of focus from "how to do" 

on "what to do".

If you take for example a simple dot product between two vectors. In c language you might end up with:

unsigned int n = length(v1); double s = 0.0; for (unsigned int i = 0 ; i < n ; i++) { s += v1[i] * v2[i]; }

In python however you could write:

return sum(e1*e2 for e1, e2 in zip(v1, v2))

You can easily notice that the c language code displayed here is highly sequential with a data-flow dependence on the i variable. 

It intrinsically contains an ordering of operations because it tells you how to do things to obtain the final sum. On the other end 

the python code exhibits no dependencies at all. It does not tell you how to compute the sum but just what to compute: the sum 

of all products.

In this course we will study how to express parallel operations in a safe and performant way. The main point is to study parallel 

iterators and their uses but we will also consider classical parallel programming schemes like divide and conquer. We will both study 

the theoretical complexity of different parallel algorithms and practice programming and performance analysis on real machines.

All applications will be developed in the  RUST programming language around the  Rayon parallel programming library.

No previous knowledge of the rust language is required as we will introduce it gradually during the course. You need however to 

be proficient in at least one low level language (typically C or C++)

Course parts

Lectures Lectures (CM) 36h

Recommended prerequisites

Students should have some base knowledge on parallel programming (some MPI or OpenMP for instance) and experience in at 

least one low level language (typically C or C++). No specific skills on system, processor architecture or theoretical models beyond 

the base training that any computer science M1 student should have received. Students should have a taste for experimenting 

2 / 3 Non-contractual information.
Last update on 27 September 2023

https://www.rust-lang.org/
https://github.com/rayon-rs/rayon


with advanced computer systems and ready to be exposed to a few theoretical models (mainly cost models for reasoning about 

parallel algorithms).

Period : Semester 9

Skills

This class will progressively enable attendees to master advanced parallel processing. This class prepare students to pursue a 

M2R internship in related topics in an academic or industrial research team to next pursue a PhD in computer science or to work 

into companies on parallel or large systems.

Useful info

Contacts

Program director

Bruno Raffin

 bruno.raffin@inria.fr

Campus

 Grenoble - University campus

3 / 3 Non-contractual information.
Last update on 27 September 2023


