

UE Coordination and supramolecular chemistry

+4

Level **Baccalaureate** ECTS 6 credits

111

Component **UFR PhITEM** (physique, ingénierie, terre, environnement, mécanique)

Semester Automne

- > Teaching language(s): English
- > Open to exchange students: Yes
- > Code d'export Apogée: PAX7NAAB

Presentation

Description

Goal: These lectures will introduce you into the world of coodination chemistry both on a synthetic and a physico-chemical points of view.

Content:

I. General concepts in coordination chemistry

- Metal ions and ligands
- Nomenclature of complexes
- · Geometry of complexes with different coordinence
- · Isomerism in coordination compounds
- II. Thermodynamic and kinetic approaches of complexes in solution
- · Formation constants: definition and experimental determination
- · Chelate effect, a central concept in coordination and supramolecular chemistry
- · Applications to supramolecular recognition of cations
- · Inertia and lability, essential kinetic notions for understanding complexes reactivity
- Synthesis of complex dedicated ligands: crown-ethers, Schiff bases, polypyridine, ...
- III. Electronic structure of metal complexes

- · Counting electrons in complexes: the Green's method
- 16/18 electrons rule
- · Reactions implying metal complexes
- Application to homogeneous catalysis
- From crystal field to ligand field
- Construction of Molecular Orbitals diagrams of octahedral metal complexes
- · Insight into spectroscopic series

IV. Optical properties of metal complexes

- Spectroscopic terms of metal complexes including lanthanide complexes
- Electronic spectroscopy of metal complexes
- · Emission of light by metal complexes
- V. Magnetic properties of monometallic complexes
- · Origins of the magnetic properties of metal complexes
- Magnetic susceptibility
- From Van Vleck equation to Curie law
- Departures from Curie law
- · Spin Cross-Over phenomenon: from definition to applications

Article Analysis

Every student will study and present an article dealing with an application strongly related to the contents of the lecture.

Practical teachings:

Four topics of the lectures will be illustrated during four hours experimental work sessions:

- · Synthesis and study of the luminescent properties of lanthanide complexes
- · Biomimetic model of molybdic oxo-tranferase enzyme
- Synthesis and properties of a iron(II) spin Cross-Over compound [1]
- Syntheis and study of a mixed-valence compound

To anticipate the Lab work, the practical work is written by each student in a dedicated Labwork notebook [2].

[1] A. Vallée et al., J. Chem. Educ. 2013, 90, doi: 10.1021/ed4000487

[2] A. Eisenberg J. Chem. Educ. 1982, 59, 1045.

Course parts

UE Coordination and supramolecular chemistry - CMTD	Lectures (CM) & Teaching Unit (UE)	36h
UE Coordination and supramolecular chemistry - TP	Practical work (TP)	16h

Recommended prerequisites

Prerequisites: Basics knowledge of general chemistry (electronic structure of the elements, thermochemistry...), in group theory and in coordination chemistry (general definitions, crystal field theory)

Period : Semester 7

Bibliography

- 🗹 Inorganic Chemistry by J. E. Huheey
- Z Inorganic Chemistry by D. Shriver and P. Atkins
- 🗹 Supramolecular Chemistry by J. M. Lehn
- 🗹 Molecular Magnetism by O. Kahn
- Z Electrons in Molecules by J. P. Launay and M. Verdaguer

Useful info

Place

> Grenoble

Campus

> Grenoble - University campus

