

UE Algorithmique et programmation impérative (INF 351)

Période de l'année Automne (sept. à dec./janv.)

- > Langue(s) d'enseignement: Français
- Ouvert aux étudiants en échange: Oui
- > Crédits ECTS Echange: 6.0
- > Code d'export Apogée: GVX3IN10

Présentation

Description

- Apprendre à programmer juste du "premier coup."
- Apprendre à spécifier un algorithme.
- Apprendre à prouver qu'un algorithme "marche"
- Connaître et savoir manipuler les structures de données classiques en programmation.
- Connaître et mettre en œuvre les principes de la programmation objet en Java.

Heures d'enseignement

UE Algorithmique et programmation impérative - TP	TP	21h
UE Algorithmique et programmation impérative - CMTD	Cours magistral - Travaux dirigés	39h
UE Algorithmique et programmation impérative - TD	TD	21h
UE Algorithmique et programmation impérative - CM	CM	18h

Période : Semestre 3

Compétences visées

- * Savoir appliquer une démarche de résolution des problèmes par abstractions successives et par ré-utilisation de schémas types.
- * Connaître des concepts et techniques d'analyse des propriétés des algorithmes.
- * Connaître et savoir mettre en œuvre des techniques de représentation des ensembles et des séquences.
- * Avoir des notions de preuve de programme.
- * Connaître et savoir mettre en œuvre des structures de données classiques en programmation.

Programme résumé (connaître et savoir manipuler) :

- * Langage des actions : actions, états, assertions ; spécification, paramétrisation ; raisonnement sur les états.
- * Composition itérative : schémas d'analyse, description et utilisation d'invariants, dénombrement d'instructions.
- * Composition récursive : étapes d'analyse, formulation de spécifications, dénombrement d'appels récursifs.
- * Tableaux : accès direct, accès séquentiel, indirection ; schémas de traitement.
- * Ensembles, séquences, piles, files : algorithmes de base et représentation contiguë à l'aide de tableaux.
- * Chaînage : application à la représentation chaînée des séquences.
- * Programmation en Java : programmation objet, Interfaces, Héritage, compilation séparée.

Infos pratiques

Contacts

Responsable pédagogique

Gilles Serasset

gilles.serasset@univ-grenoble-alpes.fr

Gestionnaire de scolarité

Scolarité DSDA

■ valence-sciences-scolarite@univ-grenoble-alpes.fr

Lieu(x) ville

> Valence

Campus

> Valence - Briffaut

