UE Multi-objective control

Informations aux utilisateurs

Veuillez noter que vous consultez une page du catalogue de formation 2020-2021. Le recrutement est actuellement terminé pour les licences, licences professionnelles, masters, DUT et formations réglementées de santé. Pour consulter le catalogue des formations 2021-2022, cliquez sur le lien suivant.

Diplômes intégrant cet élément pédagogique :

Descriptif

 Optimization and Optimal Control (21 h + 15 h labs)

 
System and Performance 
 Problem formulation; state variables representation; state transition matrix; physical constraints; the optimal control problem.
The Performance Measure 
 Performance for optimal control; selecting a performance measure; performance measure for modeling.
Dynamic Programming 
 Optimal control law; principle of optimality; decision making; recurrence relation for DP; characteristics of DP solutions; discrete linear regulators; the Hamilton-Jacobi-Bellman equation; continuous linear regulators.
Calculus of Variations 
 Fundamental concepts; problems with fixed/free final time/states; functionals involving several independant variables.
The Variational Approach to Optimal Control Problems 
 Necessary conditions for optimal control; boundary conditions; linear regulator problems; Pontryagin's minimum principle and state inequality constraints. 
Observers and State Estimation 
 State observation; continuous-time optimal filters (Kalman/Bucy, extended); discrete-time estimation. 
LQG Control 
 Traditional LQG and LQR problems; LQG controller architecture; robustness properties. 
Optimization with Scilab 
 Optimization and solving nonlinear equations; general optimization; solving nonlinear equations; nonlinear least squares; parameter fitting; linear and quadratic programming; differentiation utilities. 
Applications 
 A stochastic gradient descent approach to feedback design for network controlled systems; a constrained variational approach using the augmented Lagrangian for optimal diffusivity identification in firns; parametric optimization of a diesel engine model and comparison between numerical methods (trust region, Levenberg-Marquardt, interior point and active sets) and norms. 
Lab 1Optimal particle source identification in Tore Supra tokamak
Lab 2Optimal flow control (see the UJF experiment )

Multivariable robust control (20 h + 16 h labs)

Lesson Topic 
Motivation
 Industrial examples. 
H&infin norm, stability
  
Performance analysis/specifications
 Performances quantifiers, A first robustness criteria 
H&infin control design
 Mixed sensitivity problem 
Uncertainties and robustness
 Representing uncertainties, Robust stability, Robust performance, Robust control design. 
Performances limitations
 Bode and Poisson sensitivity integral. 
Lab Robust analysis and control of a flexible transmission system.

 

 

Informations complémentaires

Lieu(x) : Grenoble
Langue(s) : Anglais