UE Modeling and system identification

Informations aux utilisateurs

Veuillez noter que vous consultez une page du catalogue de formation 2020-2021. Le recrutement est actuellement terminé pour les licences, licences professionnelles, masters, DUT et formations réglementées de santé. Pour consulter le catalogue des formations 2021-2022, cliquez sur le lien suivant.

Diplômes intégrant cet élément pédagogique :


Feedback control design, diagnostic/supervision and process optimization typically require a specific modeling approach, which aims to capture the essential dynamics of the system while being computationally efficient. The first part of the class details the guiding principles that can be inferred from different physical domains and how multi-physics models can be obtained for complex dynamical systems while satisfying the principle of energy conservation. This leads to algebro-differential mathematical models that need to be computed with stability and computational efficiency constraints. System identification constitutes the second part of the class, to include knowledge inferred from experimental data in the input/output map set by the model. It provides methods to evaluate the model performance, to estimate parameters, to design "sufficiently informative" experiments and to build recursive algorithms for online estimation.

Lesson Topic 
Introduction to Modeling 
 Systems and models, examples of models, models for systems and signals. 
Principles of Physical Modeling 
 The phases of modeling, the mining ventilation problem example, structuring the problem, setting up the basic equations, forming the state-space models, simplified models. 
Some Basic Relationships in Physics 
 Electrical circuits, mechanical translation, mechanical rotation, flow systems, thermal systems, some observations. 
Bond Graphs: 
 Physical domains and power conjugate variables, physical model structure and bond graphs, energy storage and physical state, free energy dissipation, ideal transformations and gyrations, ideal sources, KirchhoffÂ’s laws, junctions and the network structure, bond graph modeling of electrical networks, bond graph modeling of mechanical systems, examples. 
Computer-Aided Modeling 
 Computer algebra and its applications to modeling, analytical solutions, algebraic modeling, automatic translation of bond graphs to equations, numerical methods - a short glance.
Modeling and Simulation in Scilab 
 Types of models and simulation tools for: ordinary differential equations, boundary value problems, difference equations, differential algebraic equations, hybrid systems.
Experiment Design for System Identification: 
 Basics of system identification, from continuous dynamics to sampled signals, disturbance modeling, signal spectra, choice of sampling interval and presampling filters.
Non-parametric Identification: 
 Transient-response and correlation analysis, frequency-response/Fourier/spectral analysis, estimating the disturbance spectrum.
Parameter Estimation in Linear Models: 
 Linear models, basic principle of parameter estimation, minimizing prediction errors, linear regressions and least squares, properties of prediction error minimization estimates.
10 System Identification Principles and Model Validation 
 Experiments and data collection, informative experiments, input design for open-loop experiments, identification in closed-loop, choice of the model structure, model validation, residual analysis.
11 Nonlinear Black-box Identification 
 Nonlinear state-space models, nonlinear black-box models: basic principles, parameters estimation with Gauss-Newton stochastic gradient algorithm, temperature profile identification in tokamak plasmas 
12 Recursive Estimation Methods 
 Recursive least-squares algorithm, IV method, prediction-error methods and pseudolinear regressions, Choice of updating step
Lab 1-2 Vibration Isolation for Heavy Trucks 
Lab 3 Modeling of a LEGO robot 
Lab 4 Modeling and Simulation of a Thermonuclear Plant 
Lab 5 Simulation and Control of an Inverted Pendulum Using Scilab 
Lab 6 Identification of an Active Vibration Control Benchmark Using Matlab 
Lab 7-8 Experiment design: Anthropogenic Impact on the Ozone Layer Depletion 
Lab 9 Recursive identification of a LEGO robot

Informations complémentaires

Lieu(x) : Grenoble
Langue(s) : Anglais